A body is thrown with a velocity of $9.8 \,m/s$ making an angle of $30^o$ with the horizontal. It will hit the ground after a time ....... $\sec$
$1.5 $
$1$
$3$
$2$
A projectile is fired from the surface of the earth with a velocity of $5 \,m s^{-1}$ and angle $\theta$ with the horizontal. Another projectile fired from another planet with a velocity of $3 \,m s^{-1}$ at the same angle follows a trajectory which is identical with the trajectory of the projectile fired from the earth. The value of the acceleration due to gravity on the planet is (in $\,m s^{-1}$) is
(Given $g = 9.8 \,m s^{-2}$)
A ball of mass $160\, g$ is thrown up at an angle of $60^o$ to the horizontal at a speed of $10\, m\,s^{-1}$ . The angular momentum of the ball at the highest point of the trajectcry with respect to the point from which the ball is thrown is nearly ........ $kg\, m^2/s$ $(g\, = 10\, m\,s^{-2})$
Figure shows four paths for a kicked football. Ignoring the effects of air on the flight, rank the paths according to initial horizontal velocity component, highest first
A stone is projected from the ground with velocity $50 \,m/s$ at an angle of ${30^o}$. It crosses a wall after $3$ sec. How far beyond the wall the stone will strike the ground .......... $m$ $(g = 10\,m/{\sec ^2})$
Two particles $A$ and $B$ are projected simultaneously from a fixed point of the ground. Particle $A$ is projected on a smooth horizontal surface with speed $v$, while particle $B$ is projected in air with speed $\frac{2 v}{\sqrt{3}}$. If particle $B$ hits the particle $A$, the angle of projection of $B$ with the vertical is