Two particles $A$ and $B$ are projected simultaneously from a fixed point of the ground. Particle $A$ is projected on a smooth horizontal surface with speed $v$, while particle $B$ is projected in air with speed $\frac{2 v}{\sqrt{3}}$. If particle $B$ hits the particle $A$, the angle of projection of $B$ with the vertical is
$30$
$60$
$45$
Both $(a)$ and $(b)$
A projectile is fired at an angle of $30^{\circ}$ to the horizontal such that the vertical component of its initial velocity is $80\,m / s$. Its time of flight is $T$. Its velocity at $t=\frac{T}{4}$ has a magnitude of nearly $........\frac{m}{s}$
Motion in two dimensions, in a plane can be studied by expressing position, velocity and acceleration as vectors in cartesian co-ordinates $A=A_{x} \hat{i}+A_{y} \hat{j},$ where $\hat{i}$ and $\hat{\jmath}$ are unit vector along $x$ and $y$ - directions, respectively and $A_{x}$ and $A_{y}$ are corresponding components of $A$. Motion can also be studied by expressing vectors in circular polar co-ordinates as $\overrightarrow A \, = \,{A_r}\widehat r\,\, + \,{A_\theta }\hat \theta $ where $\hat{r}=\frac{r}{r}=\cos \theta \hat{i}+\sin \theta \hat{\jmath}$ and $\hat{\theta}=-\sin \theta \hat{i}+\cos \theta \hat{j}$ are unit vectors along direction in which $\hat{r}$ and $\hat{\theta}$ are increasing.
$(a)$ Express ${\widehat {i\,}}$ and ${\widehat {j\,}}$ in terms of ${\widehat {r\,}}$ and ${\widehat {\theta }}$ .
$(b)$ Show that both $\widehat r$ and $\widehat \theta $ are unit vectors and are perpendicular to each other.
$(c)$ Show that $\frac{d}{{dr}}(\widehat r)\, = \,\omega \hat \theta \,$, where $\omega \, = \,\frac{{d\theta }}{{dt}}$ and $\frac{d}{{dt}}(\widehat \theta )\, = \, - \theta \widehat r\,$.
$(d)$ For a particle moving along a spiral given by $\overrightarrow r \, = \,a\theta \widehat r$, where $a = 1$ (unit), find dimensions of $a$.
$(e)$ Find velocity and acceleration in polar vector representation for particle moving along spiral described in $(d)$ above.
A person can throw a ball upto a maximum range of $100 \,m$. How high above the ground he can throw the same ball?
The position coordinates of a projectile projected from ground on a certain planet (with no atmosphere) are given by $y=\left(4 t-2 t^2\right) m$ and $x =(3 t)$ metre, where $t$ is in second and point of projection is taken as origin. The angle of projection of projectile with vertical is .........
Particle is dropped from the height of $20\,\,m$ from horizontal ground. There is wind blowing due to which horizontal acceleration of the particle becomes $6 ms^{^{-2}}$. Find the horizontal displacement of the particle till it reaches ground. ........ $m$