A block of mass $1\,\, kg$ is hanging vertically from a string of length $1\,\, m$ and mass /length $= 0.001\,\, Kg/m$. A small pulse is generated at its lower end. The pulse reaches the top end in approximately .... $\sec$
$0.2$
$0.1$
$0.02$
$0.01$
A steel wire has a length of $12.0 \;m$ and a mass of $2.10 \;kg .$ What should be the tension in the wire so that speed of a transverse wave on the wire equals the speed of sound in dry air at $20\,^{\circ} C =343\; m s ^{-1}$
A string of length $1 \mathrm{~m}$ and mass $2 \times 10^{-5} \mathrm{~kg}$ is under tension $\mathrm{T}$. when the string vibrates, two successive harmonics are found to occur at frequencies $750 \mathrm{~Hz}$ and $1000 \mathrm{~Hz}$. The value of tension $\mathrm{T}$ is. . . . . . .Newton.
Mechanical wave (sound wave) in a gas is
Two pulses travel in mutually opposite directions in a string with a speed of $2.5 cm/s$ as shown in the figure. Initially the pulses are $10cm$ apart. What will be the state of the string after two seconds
If tension in a wire is made four times, then what will be the change in speed of wave propagating in it ?