A block of mass $2 \,kg$ rests on a rough inclined plane making an angle of $30°$ with the horizontal. The coefficient of static friction between the block and the plane is $ 0.7$. The frictional force on the block is ....... $N$.
$9.8$
$0.7 \times 9.8 \times \sqrt 3$
$9.8 \times \sqrt 3$
$0.8 \times 9.8$
If a ladder weighing $250\,N$ is placed against a smooth vertical wall having coefficient of friction between it and floor is $0.3$, then what is the maximum force of friction available at the point of contact between the ladder and the floor ........ $N$
A wooden block of mass $M$ resting on a rough horizontal surface is pulled with a force $F$ at an angle $\phi $ with the horizontal. If $\mu $ is the coefficient of kinetic friction between the block and the surface, then acceleration of the block is
A body of mass m rests on horizontal surface. The coefficient of friction between the body and the surface is $\mu .$ If the mass is pulled by a force $P$ as shown in the figure, the limiting friction between body and surface will be
A block of mass $m$ is moving with a constant acceleration a on a rough plane. If the coefficient of friction between the block and ground is $\mu $, the power delivered by the external agent after a time $t$ from the beginning is equal to
Two blocks $A$ and $B$ are released from the top of a rough inclined plane so that $A$ slides along the plane and $B$ falls down freely. Which will have higher velocity on reaching the ground ?