A block of mass $m$ is having two similar rubber ribbons attached to it as shown in the figure. The force constant of each rubber ribbon is $K$ and surface is frictionless. The block is displaced from mean position by $x\,cm$ and released. At the mean position the ribbons are underformed. Vibration period is

827-653

  • A

    $2\pi \sqrt {\frac{{m(2k)}}{{{k^2}}}} $

  • B

    $\frac{1}{{2\pi }}\sqrt {\frac{{m(2k)}}{{{k^2}}}} $

  • C

    $2\pi \sqrt {\frac{m}{k}} $

  • D

    $2\pi \sqrt {\frac{m}{k+k}} $

Similar Questions

Two springs, of force constants $k_1$ and $k_2$ are connected to a mass $m$ as shown. The frequency of oscillation of the mass is $f$ If both $k_1$ and $k_2$ are made four times their original values, the frequency of oscillation becomes

  • [AIEEE 2007]

Two springs having spring constant $k_1$ and $k_2$ is connected in series, its resultant spring constant will be $2\,unit$. Now if they connected in parallel its resultant spring constant will be $9\,unit$, then find the value of $k_1$ and $k_2$.

The total spring constant of the system as shown in the figure will be

Two identical balls A and B each of mass 0.1 kg are attached to two identical massless springs. The spring mass system is constrained to move inside a rigid smooth pipe bent in the form of a circle as shown in the figure. The pipe is fixed in a horizontal plane. The centres of the balls can move in a circle of radius 0.06 m. Each spring has a natural length of 0.06$\pi$ m and force constant 0.1N/m. Initially both the balls are displaced by an angle $\theta = \pi /6$ radian with respect to the diameter $PQ$ of the circle and released from rest. The frequency of oscillation of the ball B is

A spring of force constant $k$ is cut into lengths of ratio $1:2:3$ . They are connected in series and the new force constant is $k'$ . Then they are connected in parallel and force constant is $k''$ . Then $k':k''$ is

  • [NEET 2017]