A beam of electrons passes undeflected through mutually perpendicular electric and magnetic fields. It the electric field is switched off, and the same magnetic field is maintained, the electrons move

  • [AIPMT 2007]
  • A

    in an elliptical orbit

  • B

    in a circular orbit

  • C

    along a parabolic path

  • D

    along a straight line

Similar Questions

A particle having a mass of $10^{- 2} \,kg$ carries a charge of $5 \times 10^{-8}\, C.$ The particle is given an initial horizontal velocity of $10^5\, m/s $ in the presence of electric field $E$ and magnetic field  $B.$ To keep the particle moving in a horizontal direction, it is necessary that

$(1)$ $\vec B$ should be perpendicular to the direction of velocity and $\vec E$ should be along the direction of velocity
$(2)$  Both $\vec B$ and $\vec E$ should be along the direction of velocity
$(3)$ Both $\vec B$ and $\vec E$ are mutually perpendicular and perpendicular to the direction of velocity.
$(4)$ $\vec B$ should be along the direction of velocity and $\vec E$ should be perpendicular to the direction of velocity
Which one of the following pairs of statements is possible?

  • [AIPMT 2010]

A charge particle of $2\,\mu\,C$ accelerated by a potential difference of $100\,V$ enters a region of uniform magnetic field of magnitude $4\,m\,T$ at right angle to the direction of field. The charge particle completes semicircle of radius $3\,cm$ inside magnetic field. The mass of the charge particle is $........\times 10^{-18}\,kg$.

  • [JEE MAIN 2023]

Electrons moving with different speeds enter a uniform magnetic field in a direction perpendicular to the field., time periods of rotation will be :

The dimension of the magnetic field intensity $B$ is

An $\alpha $ particle and a proton travel with same velocity in a magnetic field perpendicular to the direction of their velocities, find the ratio of the radii of their circular path

  • [AIIMS 2004]