A ball is thrown upwards at an angle of $60^o$ to the horizontal. It falls on the ground at a distance of $90 \,m$. If the ball is thrown with the same initial velocity at an angle $30^o$, it will fall on the ground at a distance of ........ $m$
$30$
$60 $
$90 $
$120 $
A projectile is thrown upward with a velocity $v_0$ at an angle $\alpha$ to the horizontal. The change in velocity of the projectile when it strikes the same horizontal plane is
A ball of mass $1 \;kg$ is thrown vertically upwards and returns to the ground after $3\; seconds$. Another ball, thrown at $60^{\circ}$ with vertical also stays in air for the same time before it touches the ground. The ratio of the two heights are
A ball is thrown upwards and it returns to ground describing a parabolic path. Which of the following remains constant
Motion in two dimensions, in a plane can be studied by expressing position, velocity and acceleration as vectors in cartesian co-ordinates $A=A_{x} \hat{i}+A_{y} \hat{j},$ where $\hat{i}$ and $\hat{\jmath}$ are unit vector along $x$ and $y$ - directions, respectively and $A_{x}$ and $A_{y}$ are corresponding components of $A$. Motion can also be studied by expressing vectors in circular polar co-ordinates as $\overrightarrow A \, = \,{A_r}\widehat r\,\, + \,{A_\theta }\hat \theta $ where $\hat{r}=\frac{r}{r}=\cos \theta \hat{i}+\sin \theta \hat{\jmath}$ and $\hat{\theta}=-\sin \theta \hat{i}+\cos \theta \hat{j}$ are unit vectors along direction in which $\hat{r}$ and $\hat{\theta}$ are increasing.
$(a)$ Express ${\widehat {i\,}}$ and ${\widehat {j\,}}$ in terms of ${\widehat {r\,}}$ and ${\widehat {\theta }}$ .
$(b)$ Show that both $\widehat r$ and $\widehat \theta $ are unit vectors and are perpendicular to each other.
$(c)$ Show that $\frac{d}{{dr}}(\widehat r)\, = \,\omega \hat \theta \,$, where $\omega \, = \,\frac{{d\theta }}{{dt}}$ and $\frac{d}{{dt}}(\widehat \theta )\, = \, - \theta \widehat r\,$.
$(d)$ For a particle moving along a spiral given by $\overrightarrow r \, = \,a\theta \widehat r$, where $a = 1$ (unit), find dimensions of $a$.
$(e)$ Find velocity and acceleration in polar vector representation for particle moving along spiral described in $(d)$ above.
If the time of flight of a bullet over a horizontal range $R$ is $T$, then the angle of projection with horizontal is ......