A bag contains $8$ black and $7$ white balls. Two balls are drawn at random. Then for which the probability is more
Both balls are white
One ball is white and one is black
Both balls are black
All of the above are equals
There are $3$ bags $A, B$ & $C$. Bag $A$ contains $1$ Red & $2$ Green balls, bag $B$ contains $2$ Red & $1$ Green balls and bag $C$ contains only one green ball. One ball is drawn from bag $A$ & put into bag $B$ then one ball is drawn from $B$ & put into bag $C$ & finally one ball is drawn from bag $C$ & put into bag $A$. When this operation is completed, probability that bag $A$ contains $2$ Red & $1$ Green balls, is -
If two different numbers are taken from the set $\left\{ {0,1,2,3, \ldots ,10} \right\}$, then the probability that their sum as well as absolute difference are both multiple of $4$, is
Three distinct numbers are selected from first $100$ natural numbers. The probability that all the three numbers are divisible by $2$ and $3$ is
The probability, that in a randomly selected $3-$digit number at least two digits are odd, is
Let a computer program generate only the digits $0$ and $1$ to form a string of binary numbers with probability of occurrence of $0$ at even places be $\frac{1}{2}$ and probability of occurrence of $0$ at the odd place be $\frac{1}{3}$. Then the probability that $'10'$ is followed by $'01'$ is equal to :