$v-t$ graph of an object of mass $1\,\, kg$ is shown
net work done on the object in $30\,\, sec$ is zero.
the average acceleration of the object is zero.
the average force on the object is zero.
All of the above
Velocity of a particle moving in a curvilinear path in a horizontal $X$ $Y$ plane varies with time as $\vec v = (2t\hat i + t^2 \hat j) \ \ m/s.$ Here, $t$ is in second. At $t = 1\ s$
A particle projected from origin moves in $x-y$ plane with a velocity $\vec{v}=3 \hat{i}+6 x \hat{j}$, where $\hat{i}$ and $\hat{j}$ are the unit vectors along $x$ and $y$ axis. Find the equation of path followed by the particle
The position vector of an object at any time $t$ is given by $3 t^2 \hat{i}+6 t \hat{j}+\hat{k}$. Its velocity along $y$-axis has the magnitude