$10 \,\,gm$ of ice at $0^o C$ is kept in a calorimeter of water equivalent $10 \,\,gm$. ....... $cal$ heat should be supplied to the apparatus to evaporate the water thus formed? (Neglect loss of heat)
$6200 $
$7200$
$13600$
$8200 $
A tap supplies water at $10\,^oC$ and another tap at $100\,^oC$. .......... $kg$ hot water must be taken so that we get $20\, kg$ water at $35\,^oC$ ?
$1\,kg$ of ice at $-10\,^oC$ is mixed with $4.4\, kg$ of water at $30\,^oC$. The final temperature of mixture is ........ $^oC$ (specific heat of ice is $2100\, J/kg/k$)
$2\ kg$ ice at $-20^o\ C$ is mixed with $5\ kg$ water at $20^o\ C$. Then final amount of water in the mixture would be ; Given specific heat of ice $= 0.5\ cal/g^o\ C$, specific heat of water $= 1\ cal/g^o\ C$, Latent heat of fusion of ice $= 80\ cal/g$ ........ $kg$
The temperature of equal masses of three different liquids ${x}, {y}$ and ${z}$ are $10^{\circ} {C}, 20^{\circ} {C}$ and $30^{\circ} {C}$ respectively. The temperature of mixture when ${x}$ is mixed with ${y}$ is $16^{\circ} {C}$ and that when ${y}$ is mixed with $z$ is $26^{\circ} {C}$. The temperature of mixture when $x$ and $z$ are mixed will be ...... $^{\circ} {C}$
The water equivalent of $20 \,g$ of aluminium (specific heat $0.2 \,cal ^{-1}{ }^{\circ} C ^{-1}$ ), is ......... $g$