$(1 + x) (1 + x + x^2) (1 + x + x^2 + x^3) ...... (1 + x + x^2 + ...... + x^{100})$ when written in the ascending power of $x$ then the highest exponent of $x$ is ______ .

  • A

    $4950$

  • B

    $5050$

  • C

    $5150$

  • D

    none

Similar Questions

If the sum of the coefficients in the expansion of ${(\alpha {x^2} - 2x + 1)^{35}}$ is equal to the sum of the coefficients in the expansion of ${(x - \alpha y)^{35}}$, then $\alpha $=

Let $\alpha=\sum_{k=0}^n\left(\frac{\left({ }^n C_k\right)^2}{k+1}\right)$ and $\beta=\sum_{k=0}^{n-1}\left(\frac{{ }^n C_k{ }^n C_{k+1}}{k+2}\right)$. If $5 \alpha=6 \beta$, then $n$ equals

  • [JEE MAIN 2024]

Let $K$ be the sum of the coefficients of the odd powers of $x$ in the expansion of $(1+ x )^{99}$. Let a be the middle term in the expansion of $\left(2+\frac{1}{\sqrt{2}}\right)^{200}$. If $\frac{{ }^{200} C _{99} K }{ a }=\frac{2^{\ell} m }{ n }$, where $m$ and $n$ are odd numbers, then the ordered pair $(l, n )$ is equal to :

  • [JEE MAIN 2023]

For integers $n$ and $r$, let $\left(\begin{array}{l} n \\ r \end{array}\right)=\left\{\begin{array}{ll}{ }^{n} C _{ r }, & \text { if } n \geq r \geq 0 \\ 0, & \text { otherwise }\end{array}\right.$

The maximum value of $k$ for which the sum $\sum_{i=0}^{k}\left(\begin{array}{c}10 \\ i\end{array}\right)\left(\begin{array}{c}15 \\ k-i\end{array}\right)+\sum_{i=0}^{k+1}\left(\begin{array}{c}12 \\ i\end{array}\right)\left(\begin{array}{c}13 \\ k+1-i\end{array}\right)$ exists, is equal to ...... .

  • [JEE MAIN 2021]

Let ${\left( {1 + x} \right)^{10}} = \sum\limits_{r = 0}^{10} {{C_r}{x^r}} $ and ${\left( {1 + x} \right)^7} = \sum\limits_{r = 0}^7 {{d_r}{x^r}} $ . If $P = \sum\limits_{r = 0}^5 {{C_{2r}}} $ and $Q = \sum\limits_{r = 0}^3 {{d_{2r + 1}}} $ , then $\frac{P}{{2Q}}$ is equal to