$_{86}{A^{222}}{ \to _{84}}{B^{210}}$. In this reaction how many $\alpha $ and $\beta $ particles are emitted
$6\alpha ,\,3\beta $
$3\alpha ,\,4\beta $
$4\alpha ,\,3\beta $
$3\alpha ,\,6\beta $
Originally the radioactive beta decay was thought as a decay of a nucleus with the emission of electrons only (Case $I$) . However, in addition to the electron, another (nearly) massless and electrically neutral particle is also emitted (Case $II$). Based on the figure below, which of the following is correct?
A radioactive nucleus $_{92}{X^{235}}$decays to $_{91}{Y^{231}}$. Which of the following particles are emitted
The mass of a nucleus ${ }_Z^A X$ is less that the sum of the masses of $(A-Z)$ number of neutrons and $Z$ number of protons in the nucleus. The energy equivalent to the corresponding mass difference is known as the binding energy of the nucleus. A heavy nucleus of mass $M$ can break into two light nuclei of masses $m_1$ and $m_2$ only if $\left(m_1+m_2\right)M^{\prime}$. The masses of some neutral atoms are given in the table below:
${ }_1^1 H$ | $1.007825 u$ | ${ }_2^1 H$ | $2.014102 u$ | ${ }_3^1 H$ | $3.016050 u$ | ${ }_2^4 He$ | $4.002603 u$ |
${ }_3^6 Li$ | $6.015123 u$ | ${ }_7^3 Li$ | $7.016004 u$ | ${ }_70^30 Zn$ | $69.925325 u$ | ${ }_{34}^{82} Se$ | $81.916709 u$ |
${ }_{64}^{152} Gd$ | $151.919803 u$ | ${ }_{206}^{82} Gd$ | $205.974455 u$ | ${ }_{209}^{83} Bi$ | $208.980388 u$ | ${ }_{84}^{210} Po$ | $209.982876 u$ |
$1.$ The correct statement is:
$(A)$ The nucleus ${ }_3^6 Li$ can emit an alpha particle
$(B)$ The nucleus ${ }_{84}^{210} P_0$ can emit a proton
$(C)$ Deuteron and alpha particle can undergo complete fusion.
$(D)$ The nuclei ${ }_{30}^{70} Zn$ and ${ }_{34}^{82} Se$ can undergo complete fusion.
$2.$ The kinetic energy (in $keV$ ) of the alpha particle, when the nucleus ${ }_{84}^{210} P _0$ at rest undergoes alpha decay, is:
$(A)$ $5319$ $(B)$ $5422$ $(C)$ $5707$ $(D)$ $5818$
Give the answer question $1$ and $2.$
What happens to the mass number and atomic number of an element when it emits $\gamma$-radiation?
In the nuclear decay given below
$_z{X^A}{ \to _{z + 1}}{Y^A}{ \to _{z - 1}}{K^{A - 4}}{ \to _{z - 1}}{K^{A - 4}}$
the particles emitted in the sequence are