आरोही क्रम में, दी गई संख्या $\alpha $ के लिये सही क्रम कौन सा है
${\log _2}\alpha ,\,{\log _3}\alpha ,\,{\log _e}\alpha ,\,{\log _{10}}\alpha $
${\log _{10}}\alpha ,\,{\log _3}\alpha ,{\log _e}\alpha ,{\log _2}\alpha $
${\log _{10}}\alpha ,\,{\log _e}\alpha ,\,{\log _2}\alpha ,\,{\log _3}\alpha $
${\log _3}\alpha ,\,{\log _e}\alpha ,\,{\log _2}\alpha ,\,{\log _{10}}\alpha $
${81^{(1/{{\log }_5}3)}} + {27^{{{\log }_{_9}}36}} + {3^{4/{{\log }_{_7}}9}}$ का मान है
यदि ${\log _e}\left( {\frac{{a + b}}{2}} \right) = \frac{1}{2}({\log _e}a + {\log _e}b)$ हो, तो $a $ और $b$ के मध्य सम्बंध होगा
असमिका ${2^{{{\log }_{\sqrt 2 }}(x - 1)}} > x + 5$ के लिए, $x$ के वास्तविक मानों का समुच्चय है
निम्नलिखित युगपत $(simultaneous)$ समीकरण $\log _{1 / 3}(x+y)+\log _3(x-y)=2$
$2^{y^2}=512^{x+1}$ के हल युगमों $(solution\,pairs)$ $(x, y)$ की संख्या होगी
यदि $A = {\log _2}{\log _2}{\log _4}256 + 2{\log _{\sqrt 2 \,}}\,2$ हो, तब $A $ का मान होगा