સમક્ષિતિજ સમતલમાં તેની અંદરની બાજુની રેખા પર કોઈ વિદ્યુતભાર ન હોય તેવો $a$ ત્રિજ્યાનો સમતલ સપાટી વાળો એક અર્ધ ગોળો છે. તેની શિરોલંબ દિશા સાથે $\pi /4$ ખૂણો બનાવે તેમ સમાન વિદ્યુતક્ષેત્ર આવેલું છે. અર્ધ ગોળાની વક્ર સપાટીમાંથી પસાર થતું વિદ્યુત ફલક્સ ....... છે.
$\frac{{\pi {a^2}E}}{{(2\sqrt 2 )}}$
$\frac{{\pi {a^2}E}}{{\sqrt 2 }}$
$\frac{{(\pi \,\, + \,\,2)\,\pi {a^2}E}}{{(2\sqrt 2 )}}$
$\pi a^2E$
આકૃતિમાં દર્શાવ્યા મુજબ બંધ પૃષ્ઠ ગોળીય વાહકમાંથી પસાર થાય છે. જો ઋણ વિદ્યુતભારને $P$ બિંદુ આગળ મૂકવામાં આવે તો બંધ પૃષ્ઠમાંથી બહાર આવતા વિદ્યુત ફલક્સનો સ્વભાવ કેવો હશે ?
વિદ્યુત ફલક્સનો $\mathrm{SI}$ એકમ લખો.
$L$ બાજુવાળા સમઘન $(A\,B\,C\,D\,E\,F\,G\,H)$ ના કેન્દ્ર પર $q$ વિદ્યુતભાર મૂકવામાં આવે છે. કેન્દ્ર $O$ થી $L$ અંતરે $q$ વિદ્યુતભાર મૂકવામાં આવે છે. $BGFC$ માંથી પસાર થતું વિદ્યુતફ્લક્સ કેટલું હશે?
સમક્ષિતિજ સમતલ પર $a$ ત્રિજ્યાનો વિજભારરહિત અર્ધગોળો પડેલો છે.આકૃતિમાં દર્શાવ્યા પ્રમાણે તેના પર શિરોલંબ સાથે $\frac {\pi }{4}$ ના ખૂણે એકસમાન વિદ્યુતક્ષેત્ર લગાવેલ છે.અર્ધગોળાની વક્ર સપાટીમાંથી પસાર થતું વિદ્યુત ફ્લક્સ કેટલું હશે?
જો વિંદ્યુતભાર $q$ ને અવાહક સપાટી ધરાવતા બંધ અર્ધગોળાકારનાં કેન્દ્ર આગળ મૂકવામાં આવે તો સપાટ સપાટીમાંથી પસાર થતું ફુલ ફ્લક્સ ............ થશે.