$64$ drops of mercury each charged to a potential of $10\,V$. They are combined to form one bigger drop. The potential of this drop will be.......$V$ (Assume all the drops to be spherical)

  • A

    $160$

  • B

    $80$

  • C

    $10$

  • D

    $640$

Similar Questions

Draw a graph of $V \to r$ for spherical shell.

The ratio of electric potentials at the point $E$ to that at the point $F$ is

The radius of a soap bubble whose potential is $16\,V$ is doubled. The new potential of the bubble will be.....$V$

Electric field at a point $(x, y, z)$ is represented by $\vec E = 2x\hat i + {y^2}\hat j$ if potential at $(0,0,0)$ is $2\, volt$ find potential at $(1, 1, 1)$

Two point charges $-Q$ and $+Q / \sqrt{3}$ are placed in the xy-plane at the origin $(0,0)$ and a point $(2,0)$, respectively, as shown in the figure. This results in an equipotential circle of radius $R$ and potential $V =0$ in the $xy$-plane with its center at $(b, 0)$. All lengths are measured in meters.

($1$) The value of $R$ is. . . . meter.

($2$) The value of $b$ is. . . . . .meter.

  • [IIT 2021]