$\sim (p \wedge q)$ is equal to .....
$\sim p\; \vee \sim q$
$\sim p\; \wedge \sim q$
$\sim p \wedge q$
$p\; \wedge \sim q$
Let $F_{1}(A, B, C)=(A \wedge \sim B) \vee[\sim C \wedge(A \vee B)] \vee \sim A$ and $F _{2}( A , B )=( A \vee B ) \vee( B \rightarrow \sim A )$ be two logical expressions. Then ...... .
Let $p$ and $q$ be any two logical statements and $r:p \to \left( { \sim p \vee q} \right)$. If $r$ has a truth value $F$, then the truth values of $p$ and $q$ are respectively
Which of the following is a statement
Let $p , q , r$ be three statements such that the truth value of $( p \wedge q ) \rightarrow(\sim q \vee r )$ is $F$. Then the truth values of $p , q , r$ are respectively
The Boolean expression $( p \Rightarrow q ) \wedge( q \Rightarrow \sim p )$ is equivalent to :