$\left| {\,\begin{array}{*{20}{c}}5&3&{ - 1}\\{ - 7}&x&{ - 3}\\9&6&{ - 2}\end{array}\,} \right| = 0$, then $ x$ is equal to

  • A

    $3$

  • B

    $5$

  • C

    $7$

  • D

    $9$

Similar Questions

Let $\alpha \beta \gamma=45 ; \alpha, \beta, \gamma \in R$. If $x(\alpha, 1,2)+y(1, \beta, 2)$ $+z(2,3, \gamma)=(0,0,0)$ for some $x, y, z \in R, x y z \neq$ 0 , then $6 \alpha+4 \beta+\gamma$ is equal to..............

  • [JEE MAIN 2024]

The system of equations $\lambda x + y + z = 0,$ $ - x + \lambda y + z = 0,$ $ - x - y + \lambda z = 0$, will have a non zero solution if real values of $\lambda $ are given by

  • [IIT 1984]

The maximum value of

$f(x)=\left|\begin{array}{ccc} \sin ^{2} x & 1+\cos ^{2} x & \cos 2 x \\ 1+\sin ^{2} x & \cos ^{2} x & \cos 2 x \\ \sin ^{2} x & \cos ^{2} x & \sin 2 x \end{array}\right|, x \in R \text { is }$

  • [JEE MAIN 2021]

If $a, b, c$ are three complex numbers such that $a^2 + b^2 + c^2 = 0$ and  $\left| {\begin{array}{*{20}{c}}
{\left( {{b^2} + {c^2}} \right)}&{ab}&{ac}\\
{ab}&{\left( {{c^2} + {a^2}} \right)}&{bc}\\
{ac}&{bc}&{\left( {{a^2} + {b^2}} \right)}
\end{array}} \right| = K{a^2}{b^2}{c^2}$ then value of $K$ is

The system of equations $4x + y - 2z = 0\ ,\ x - 2y + z = 0$ ; $x + y - z =0 $ has