$\left| {\,\begin{array}{*{20}{c}}{a + b}&{a + 2b}&{a + 3b}\\{a + 2b}&{a + 3b}&{a + 4b}\\{a + 4b}&{a + 5b}&{a + 6b}\end{array}\,} \right| = $
${a^2} + {b^2} + {c^2} - 3abc$
$3ab$
$3a + 5b$
$0$
જો $\alpha $, $\beta$ $\gamma$, $\delta$ એ $z^5=1$ ના કાલ્પનિક બીજ હોય તો $\left| {\begin{array}{*{20}{c}}
{{e^\alpha }}&{{e^{2\alpha }}}&{{e^{3\alpha + 1}}}&{ - {e^{ - \delta }}} \\
{{e^\beta }}&{{e^{2\beta }}}&{{e^{3\beta + 1}}}&{ - {e^{ - \delta }}} \\
{{e^\gamma }}&{{e^{2\gamma }}}&{{e^{3\gamma + 1}}}&{ - {e^{ - \delta }}}
\end{array}} \right|$ મેળવો.
$2\,\,\left| {\,\begin{array}{*{20}{c}}1&1&1\\a&b&c\\{{a^2} - bc}&{{b^2} - ac}&{{c^2} - ab}\end{array}\,} \right| = $
જો ${D_r} = \left| {\begin{array}{*{20}{c}}{{2^{r - 1}}}&{{{2.3}^{r - 1}}}&{{{4.5}^{r - 1}}}\\x&y&z\\{{2^n} - 1}&{{3^n} - 1}&{{5^n} - 1}\end{array}} \right|$, તો $\sum\limits_{r = 1}^n {{D_r} = } $
નિશ્ચાયકના ગુણધર્મનો ઉપયોગ કરી અને વિસ્તરણ કર્યા સિવાય સાબિત કરો : $\left|\begin{array}{lll}1 & b c & a(b+c) \\ 1 & c a & b(c+a) \\ 1 & a b & c(a+b)\end{array}\right|=0$
$\left| {\,\begin{array}{*{20}{c}}{{a^2}}&{{b^2}}&{{c^2}}\\{{{(a + 1)}^2}}&{{{(b + 1)}^2}}&{{{(c + 1)}^2}}\\{{{(a - 1)}^2}}&{{{(b - 1)}^2}}&{{{(c - 1)}^2}}\end{array}\,} \right| = $