$\left| {\,\begin{array}{*{20}{c}}1&a&{{a^2} - bc}\\1&b&{{b^2} - ac}\\1&c&{{c^2} - ab}\end{array}\,} \right| = $

  • [IIT 1988]
  • A

    $0$

  • B

    ${a^3} + {b^3} + {c^3} - 3abc$

  • C

    $3abc$

  • D

    ${(a + b + c)^3}$

Similar Questions

यदि $\omega $ इकाई  का घनमूल हो व $\Delta  = \left| {\begin{array}{*{20}{c}}1&{2\omega }\\\omega &{{\omega ^2}}\end{array}} \right|$, तो ${\Delta ^2}$ =

यदि समीकरण $\left| {\,\begin{array}{*{20}{c}}x&3&7\\2&x&2\\7&6&x\end{array}\,} \right| = 0$का एक मूल -$9 $ हो, तो अन्य दो मूल होंगे

  • [IIT 1983]

$\left| {\,\begin{array}{*{20}{c}}{1/a}&1&{bc}\\{1/b}&1&{ca}\\{1/c}&1&{ab}\end{array}\,} \right| = $

सारणिकों का मान ज्ञात कीजिए:

$\left|\begin{array}{cc}2 & 4 \\ -5 & -1\end{array}\right|$

अंतराल $(0,4 \pi)$ में $\theta$ के मानों, जिनके लिए रैखिक समीकरण निकाय

$3(\sin 3 \theta) x-y+z=2$

$3(\cos 2 \theta) x+4 y+3 z=3$

$6 x+7 y+7 z=9$

का कोई हल नहीं है, की संख्या है:

  • [JEE MAIN 2022]