${6^{th}}$ term in expansion of ${\left( {2{x^2} - \frac{1}{{3{x^2}}}} \right)^{10}}$ is
$\frac{{4580}}{{17}}$
$ - \frac{{896}}{{27}}$
$\frac{{5580}}{{17}}$
None of these
${r^{th}}$ term in the expansion of ${(a + 2x)^n}$ is
If $a^3 + b^6 = 2$, then the maximum value of the term independent of $x$ in the expansion of $(ax^{\frac{1}{3}}+bx^{\frac{-1}{6}})^9$ is, where $(a > 0, b > 0)$
If $\left(\frac{3^{6}}{4^{4}}\right) \mathrm{k}$ is the term, independent of $\mathrm{x}$, in the binomial expansion of $\left(\frac{\mathrm{x}}{4}-\frac{12}{\mathrm{x}^{2}}\right)^{12}$, then $\mathrm{k}$ is equal to ...... .
The greatest value of the term independent of $x$ in the expansion of ${\left( {x\sin \theta + \frac{{\cos \theta }}{x}} \right)^{10}}$ is
The term independent of $x$ in ${\left[ {\sqrt{\frac{ x }{3}} + \frac{{\sqrt 3 }}{{{x^2}}}} \right]^{10}}$ is