$A$ relation $R$ is defined from $\{2, 3, 4, 5\}$ to $\{3, 6, 7, 10\}$ by $xRy \Leftrightarrow x$ is relatively prime to $y$. Then domain of $R$ is

  • A

    $\{2, 3, 5\}$

  • B

    $\{3, 5\}$

  • C

    $\{2, 3, 4\}$

  • D

    $\{2, 3, 4, 5\}$

Similar Questions

Determine whether each of the following relations are reflexive, symmetric and transitive:

Relation $R$ in the set $A$ of human beings in a town at a particular time given by

$R =\{(x, y): x $ is father of $y\}$

Let $A = \{1, 2, 3\}, B = \{1, 3, 5\}$. $A$ relation $R:A \to B$ is defined by $R = \{(1, 3), (1, 5), (2, 1)\}$. Then ${R^{ - 1}}$ is defined by

Let $R$ be a relation on $N \times N$ defined by $(a, b) R$ (c, d) if and only if $a d(b-c)=b c(a-d)$. Then $R$ is

  • [JEE MAIN 2023]

The minimum number of elements that must be added to the relation $R =\{( a , b ),( b , c )\}$ on the set $\{a, b, c\}$ so that it becomes symmetric and transitive is:

  • [JEE MAIN 2023]

Let $A=\{0,3,4,6,7,8,9,10\} \quad$ and $R$ be the relation defined on A such that $R =\{( x , y ) \in A \times A : x - y \quad$ is odd positive integer or $x-y=2\}$. The minimum number of elements that must be added to the relation $R$, so that it is a symmetric relation, is equal to $...........$.

  • [JEE MAIN 2023]