$20$ teachers of a school either teach mathematics or physics. $12$ of them teach mathematics while $4$ teach both the subjects. Then the number of teachers teaching physics is
$12$
$8$
$16$
None of these
In a survey of $600$ students in a school, $150$ students were found to be taking tea and $225$ taking coffee, $100$ were taking both tea and coffee. Find how many students were taking neither tea nor coffee?
In a classroom, one-fifth of the boys leave the class and the ratio of the remaining boys to girls is $2: 3$. If further $44$ girls leave the class, then class the ratio of boys to girls is $5: 2$. How many more boys should leave the class so that the number of boys equals that of girls?
A market research group conducted a survey of $1000$ consumers and reported that $720$ consumers like product $\mathrm{A}$ and $450$ consumers like product $\mathrm{B}$, what is the least number that must have liked both products?
A group of $40$ students appeared in an examination of $3$ subjects - Mathematics, Physics Chemistry. It was found that all students passed in at least one of the subjects, $20$ students passed in Mathematics, $25$ students passed in Physics, $16$ students passed in Chemistry, at most $11$ students passed in both Mathematics and Physics, at most $15$ students passed in both Physics and Chemistry, at most $15$ students passed in both Mathematics and Chemistry. The maximum number of students passed in all the three subjects is___________.
Let $\mathrm{U}$ be the set of all triangles in a plane. If $\mathrm{A}$ is the set of all triangles with at least one angle different from $60^{\circ},$ what is $\mathrm{A} ^{\prime} ?$