$(a)$ Consider circuit in figure. How much energy is absorbed by electrons from the initial state of no current (ignore thermal motion) to the state of drift velocity ?
$(b)$ Electrons give up energy at the rate of $R{I^2}\;$ per second to the thermal energy. What time scale would number associate with energy in problem $(a)$ ? $n = no$ of electron/volume $ = {10^{29}}{m^{ - 3}}$, length of circuit $= 10$ $cm$, cross-section $=$ $A = $ ${\left( {1\,mm} \right)^2}$
$(a)$ Current in the circuit $\mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}}=\frac{6}{6}=1 \mathrm{~A}$
Number density of electron $n=\frac{10^{29}}{\mathrm{~m}^{3}}$
Length of wire of circuit $l=10 \mathrm{~cm}=0.1 \mathrm{~m}$
Area of cross section $A=(1 \mathrm{~mm})^{2}$
$\Rightarrow$ Current due to electron moving with drift velocity,
$\mathrm{I}=n \mathrm{~A} v_{d} e$
$\therefore v_{d} =\frac{\mathrm{I}}{n \mathrm{~A} e}$
$=\frac{1}{10^{29} \times\left(10^{-3}\right)^{2} \times 1.6 \times 10^{-19}}$4
$=\frac{10^{-5}}{16} \frac{\mathrm{m}}{\mathrm{s}}=0.0625 \times 10^{-5} \frac{\mathrm{m}}{\mathrm{s}}$
$=6.25 \times 10^{-3} \frac{\mathrm{m}}{\mathrm{s}}$
$\Rightarrow$ Energy absorbed in form of $K.\;E$.,
$\mathrm{K.E} .= \frac{1}{2} m_{e} v_{d}^{2} \times n \mathrm{Al}$
$=\frac{1}{2} \times 9.1 \times 10^{-31} \times\left(6.25 \times 10^{-3}\right)^{2}$
$\times 10^{29} \times 10^{-6} \times 10^{-1}$
$=177.7 \times 10^{-19}$
$\therefore \quad \text { K.E. } \approx 1.78 \times 10^{-17} \mathrm{~J}$
$(b)$ Power dissipated,
$\mathrm{P}=\mathrm{I}^{2} \mathrm{R}$
$\frac{\mathrm{E}}{t}=(1)^{2} \times 6$
$\therefore \frac{\mathrm{E}}{t}=6 \mathrm{~W}$
$\therefore t=\frac{\mathrm{E}}{6}=\frac{2 \times 10^{-17}}{6} \quad[\because \mathrm{K.\textrm{E } . = \mathrm { E } ]}$
$\therefore t =\frac{1}{3} \times 10^{-17}$
$\therefore t=0.33 \times 10^{-17} \mathrm{~s}$
$\therefore T \approx 3.3 \times 10^{-18} \mathrm{~s}$
A heater coil is cut into two equal parts and only one part is now used in the heater. The heat generated will now be
Four identical electrical lamps are labelled $1.5\,V$, $0.5\,A$ which describes the condition necessary for them to operate at normal brightness. A $12\,V$ battery of negligible internal resistance is connected to lamps as shown, then
Two heaters $A$ and $B$ have power rating of $1 \mathrm{~kW}$ and $2 \mathrm{~kW}$, respectively. Those two are first connected in series and then in parallel to a fixed power source. The ratio of power outputs for these two cases is:
Two bulbs of equal wattage, one having carbon filament and the other having a tungsten filament are connected in series to the mains, then
A heating coil is labelled $100\, W$, $220\, V$. The coil is cut in half and the two pieces are joined in parallel to the same source. The energy now liberated per second is .............. $J$