$Assertion$ : Mountain roads rarely go straight up the slope.
$Reason$ : Slope of mountains are large, therefore more chances of vehicle to slip from roads
If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion.
If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion.
If the Assertion is correct but Reason is incorrect.
If both the Assertion and Reason are incorrect.
An aircraft executes a horizontal loop at a speed of $720\; km/h$ with its wings banked at $15^o$. What is the radius of the loop in $km$?
A modern grand-prix racing car of mass $m$ is travelling on a flat track in a circular arc of radius $R$ with a speed $v$. If the coefficient of static friction between the tyres and the track is $\mu_{s},$ then the magnitude of negative lift $F_{L}$ acting downwards on the car is
(Assume forces on the four tyres are identical and $g =$ acceleration due to gravity)
A motor cyclist moving with a velocity of $72\, km/hour$ on a flat road takes a turn on the road at a point where the radius of curvature of the road is $20$ meters. The acceleration due to gravity is $10 m/sec^2$. In order to avoid skidding, he must not bend with respect to the vertical plane by an angle greater than
A $100 \,kg$ car is moving with a maximum velocity of $9 \,m/s$ across a circular track of radius $30\,m$. The maximum force of friction between the road and the car is ........ $N$
Write equation of centripetal acceleration and centripetal force for uniform circular motion.