Write an expression for potential at the point outside a uniformly charged spherical shell outside on the surface and inside the shell.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We have seen in chapter $1$ that for a uniformly charged spherical shell, the electric field outside the shell is as if the entire charge is concentrated at the centre and electric field obtained due to point charge.

The potential outside the shell and on the surface of shell,

$\mathrm{V}=\frac{k q}{r}(r \geq \mathrm{R})$

where $q$ is the total charge on the shell

$\mathrm{R}$ is the radius of the shell

$k$ is the coulomb's constant

The electric field at a point inside the shell is zero. Means the potential inside the shell is constant and its magnitude is same as potential at the surface of the shell.

$\therefore \mathrm{V}=\frac{k q}{\mathrm{R}}(r \leq \mathrm{R})$

Similar Questions

In a uniform electric field, the potential is $10$ $V $ at the origin of coordinates, and $8$ $V$ at each of the points $(1, 0, 0), (0, 1, 0) $ and $(0, 0, 1)$. The potential at the point $(1, 1, 1)$ will be....$V$

A thin spherical conducting shell of radius $R$ has a charge $q$ . Another charge $Q$ is placed at the centre of the shell. The electrostatic potential at a point $P$ at a distance $R/2$ from the centre of the shell is

The electric potential $V(x, y, z)$ for a planar charge distribution is given by: 

$V\left( {x,y,z} \right) = \left\{ {\begin{array}{*{20}{c}}
{0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,for\,x\, < \, - d}\\
{ - {V_0}{{\left( {1 + \frac{x}{d}} \right)}^2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,for\, - \,d\, \le x < 0}\\
{ - {V_0}\left( {1 + 2\frac{x}{d}} \right)\,\,\,\,\,\,\,\,\,\,\,for\,0\, \le x < d}\\
{ - 3{V_0}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,for\,x\, > \,d}
\end{array}} \right.$

where $-V_0$ is the potential at the origin and $d$ is a distance. Graph of electric field as a function of position is given as

Two point charges $-Q$ and $+Q / \sqrt{3}$ are placed in the xy-plane at the origin $(0,0)$ and a point $(2,0)$, respectively, as shown in the figure. This results in an equipotential circle of radius $R$ and potential $V =0$ in the $xy$-plane with its center at $(b, 0)$. All lengths are measured in meters.

($1$) The value of $R$ is. . . . meter.

($2$) The value of $b$ is. . . . . .meter.

  • [IIT 2021]

Three concentric spherical shells have radii $a, b$ and $c (a < b < c)$ and have surface charge densities $\sigma ,-\;\sigma $ and $\;\sigma \;$ respectively. If  $V_A,V_B$ and $V_C$  denote the potentials of the three shells, then, for $c = a +b,$ we have

  • [AIPMT 2009]