Work equal to $25\,J$ is done on a mass of $2\,kg$ to set it in motion. If whole of it is used to increase the kinetic energy then velocity acquired by the mass is ............ $\mathrm{m}/ \mathrm{s}$

  • A

    $5$

  • B

    $12.5$

  • C

    $25$

  • D

    $50$

Similar Questions

The kinetic energy $K$ of a particle moving in a straight line depends upon the distance $s$  as $K = as^2$. The force acting on the particle is
 

A mass $m$ slips along the wall of a semispherical surface of radius $R$. The velocity at the bottom of the surface is

A body of mass $2\, kg$ slides down a curved track which is quadrant of a circle of radius $1$ metre. All the surfaces are frictionless. If the body starts from rest, its speed at the bottom of the track is ..............  $\mathrm{m} / \mathrm{s}$

A force $F = - K(yi + xj)$ (where K is a positive constant) acts on a particle moving in the xy-plane. Starting from the origin, the particle is taken along the positive x-axis to the point $(a, 0)$ and then parallel to the y-axis to the point $(a, a)$. The total work done by the force F on the particles is

A vertical spring with force constant $k$ is fixed on a table. A ball of mass $m$ at a height $h$ above the free upper end of the spring falls vertically on the spring so that the spring is compressed by a distance $d$. The net work done in the process is