Why Coulombian force is called two body force ?
Two charged spheres separated at a distance $d$ exert a force $F$ on each other. If they are immersed in a liquid of dielectric constant $2$, then what is the force (if all conditions are same)
Four point charges, each of $+ q$, are rigidly fixed at the four corners of a square planar soap film of side ' $a$ ' The surface tension of the soap film is $\gamma$. The system of charges and planar film are in equilibrium, and $a=k\left[\frac{q^2}{\gamma}\right]^{1 / N}$, where ' $k$ ' is a constant. Then $N$ is
In the given figure two tiny conducting balls of identical mass $m$ and identical charge $q$ hang from non-conducting threads of equal length $L$. Assume that $\theta$ is so small that $\tan \theta \approx \sin \theta $, then for equilibrium $x$ is equal to
Two charges $\mathrm{q}$ and $-3\mathrm{q}$ are placed fixed on $x-$ axis separated by distance $\mathrm{'d'}$. Where should a third charge $2\mathrm{q}$ be placed such that it will not experience any force ?
Three point charges $q,-2 q$ and $2 q$ are placed on $x$-axis at a distance $x=0, x=\frac{3}{4} R$ and $x=R$ respectively from origin as shown. If $q =2 \times 10^{-6}\,C$ and $R =2\,cm$, the magnitude of net force experienced by the charge $-2 q$ is .......... $N$