Which of the following statement is a tautology?
$\left[ {\left\{ {p \wedge \left( {\left( {q \vee t} \right) \wedge p} \right)} \right\} \to \left\{ {\left( {q \vee r} \right) \wedge \left( {p \vee t} \right)} \right\}} \right] \leftrightarrow \left[ { \sim \left( {q \vee r} \right) \to \sim p} \right]$
$\left\{ {p \wedge \left( {\left( {q \vee t} \right) \wedge p} \right)} \right\} \leftrightarrow \left[ {\left( {q \vee r} \right) \to p} \right]$
$\left\{ {p \wedge \left( {\left( {q \vee t} \right) \wedge p} \right)} \right\} \leftrightarrow \left[ {q \wedge r \wedge p} \right]$
$\left\{ {p \wedge \left( {\left( {q \vee t} \right) \wedge p} \right)} \right\} \leftrightarrow t$ (where $t$ denotes tautology)
If $p , q$ and $r$ are three propositions, then which of the following combination of truth values of $p , q$ and $r$ makes the logical expression $\{(p \vee q) \wedge((\sim p) \vee r)\} \rightarrow((\sim q) \vee r)$ false ?
Which of the following is equivalent to the Boolean expression $\mathrm{p} \wedge \sim \mathrm{q}$ ?
The contrapositive of the statement "If it is raining, then I will not come", is
The compound statement $(\sim( P \wedge Q )) \vee((\sim P ) \wedge Q ) \Rightarrow((\sim P ) \wedge(\sim Q ))$ is equivalent to
Consider
Statement $-1 :$$\left( {p \wedge \sim q} \right) \wedge \left( { \sim p \wedge q} \right)$ is a fallacy.
Statement $-2 :$$(p \rightarrow q) \leftrightarrow ( \sim q \rightarrow \sim p )$ is a tautology.