નીચેનામાંથી ક્યુ વિધાન સાચુ છે?
જો ગણ $A$ એ સાન્ત ગણ હોય કે જેથી $f : A \to A$ એ એક-એક વિધેય થાય તો $f$ વ્યાપત પણ થાય.
જો વિધેય તેના પ્રદેશગણમા સતત હોય અને $x$ કોઇ પણ $2$ કિમતો ના ચિહ્નો બદલવામા આવે તો અયુગ્મ બીજો ની કિમત આપેલ $x$ ની વચ્ચે મળે.
જો $f : A \to A$ એ એક-એક વિધેય હોય તો વ્યાપત પણ થાય
વક્રના કોઇ પણ બિંદુ પાસે સ્થાનીય મહત્તમ અને વૈશ્વિક ન્યુનતમ કિમત મળી શકે છે.
સાબિત કરો કે માનાંક વિધેય $f : R \rightarrow R,$ $(x)=|x|$ દ્વારા વ્યાખ્યાયિત વિધેય એક-એક નથી અને વ્યાપ્ત પણ નથી. જો $x$ ધન અથવા શૂન્ય (અનૃણ) હોય, તો $|x| = x$ અને $x$ ઋણ હોય, તો $|x| = - x$.
વિધેય ${\sin ^{ - 1}}({\log _3}x)$ નો પ્રદેશ મેળવો.
વિધેય $f(x) = \int\limits_0^1 {t\,\sin \,\left( {x + \pi t} \right)} dt,\,x \in \,R$ નિ મહત્તમ કિમત ......... થાય.
ધારો કે વિધેય $f: R \rightarrow R$ માટે $f(x+y)=f(x) f(y)$ બધા $x, y \in R$ અને $f(1)=3$ થાય જો $\sum \limits_{i=1}^{n} f(i)=363,$ હોય તો $n$ ની કિમત શોધો