Which of the following is the negation of the statement "for all $M\,>\,0$, there exists $x \in S$ such that $\mathrm{x} \geq \mathrm{M}^{\prime \prime} ?$
there exists $M\,>\,0$, such that $x \geq M$ for all $x \in S$
there exists $M\,>\,0$, there exists $x \in S$ such that $x \geq M$
there exists $M\,>\,0$, such that $x < M$ for all $x \in S$
there exists $M\,>\,0$, there exists $x \in S$ such that $x < M $
$(p\rightarrow q) \leftrightarrow (q \vee ~ p)$ is
Let $F_{1}(A, B, C)=(A \wedge \sim B) \vee[\sim C \wedge(A \vee B)] \vee \sim A$ and $F _{2}( A , B )=( A \vee B ) \vee( B \rightarrow \sim A )$ be two logical expressions. Then ...... .
Negation of $p \wedge( q \wedge \sim( p \wedge q ))$ is
The statement "If $3^2 = 10$ then $I$ get second prize" is logically equivalent to
The statement $(\mathrm{p} \wedge(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{r})) \rightarrow \mathrm{r}$ is :