When a ball is freely fallen from a given height it bounces to $80\%$ of its original height. What fraction of its mechanical energy is lost in each bounce ?

  • A

    $0.20$

  • B

    $0.60$

  • C

    $0.40$

  • D

    $1$

Similar Questions

The potential energy of a diatomic molecule is given by $U = \frac{A}{{{r^{12}}}} - \frac{B}{{{r^6}}}$ . $A$ and $B$ are positive constants. The distance $r$ between them at equilibrium is 

$A$ ball is projected from ground with a velocity $V$ at an angle $\theta$ to the vertical. On its path it makes an elastic collison with $a$ vertical wall and returns to ground. The total time of flight of the ball is 

A disc of mass $M$ and radius $R$ rolls on a horizontal surface and then rolls up an inclined plane as shown in the figure. If the velocity of the disc is $v$, the height to which the disc will rise will be

A boy holds a uniform chain of length $2\,m$ which is kept on a smooth table such that a length of $60\,cm$ hangs freely from the edge of the table. The total mass of the chain is $4\,kg$. What is the work done in pulling the entire chain on the table .............. $\mathrm{J}$

Power supplied to a particle of mass $2\, kg$ varies with time as $P = \frac{{3{t^2}}}{2}$ $W$. Here $t$ is in $seconds$ . If velocity of particle at $t = 0$ is $v = 0$. The velocity of particle at time $t = 2\, sec$. will be ........... $\mathrm{m}/ \mathrm{s}$