What is the $ pH$ of $0.01\, M$ glycine solution? For glycine, $K{a_1} = 4.5 \times {10^{ - 3}}$ and $K{a_2} = 1.7 \times {10^{ - 10}}$ at $298 \,K$
$3$
$10$
$6.1$
$7.2$
Given
$(i)$ $\begin{gathered}
HCN\left( {aq} \right) + {H_2}O\left( l \right) \rightleftharpoons {H_3}{O^ + }\left( {aq} \right) + C{N^ - }\left( {aq} \right) \hfill \\
{K_a} = 6.2 \times {10^{ - 10}} \hfill \\
\end{gathered} $
$(ii)$ $\begin{gathered}
C{N^ - }\left( {aq} \right) + {H_2}O\left( l \right) \rightleftharpoons HCN\left( {aq} \right) + O{H^ - }\left( {aq} \right) \hfill \\
{K_b} = 1.6 \times {10^{ - 5}} \hfill \\
\end{gathered} $
These equilibria show the following order of the relative base strength
For a weak acid $HA$ with dissociation constant ${10^{ - 9}},\,\,pOH$ of its $0.1 \,M$ solution is
${K_a}$ of $C{H_3}COOH$ is $1.76 \times {10^{ - 5}}$ at $298$ $K$ temperature. Calculate dissociation constant of its conjugate base.
When $CO_2$ dissolves in water, the following equilibrium is established
$C{O_2} + 2{H_2}O\, \rightleftharpoons {H_3}{O^ + } + HCO_3^ - $
for which the equilibrium constant is $3.8 \times 10^{-7}$ and $pH = 6.0$. The ratio of $[HCO_3^- ]$ to $[CO_2]$ would be :-
$0.2$ molar solution of formic acid is ionized $3.2\%$. Its ionization constant is