$\sum\limits_{r = 0}^{15} {\left( {{}^{15}{C_r}{}^{40}{C_{15}}{}^{20}{C_r} - {}^{35}{C_{15}}{}^{15}{C_r}{}^{25}{C_r}} \right)} $ ની કિમત મેળવો
$0$
${{}^{40}{C_{15}} - {}^{35}{C_{15}}}$
${{}^{35}{C_{15}} - {}^{40}{C_{15}}}$
$^{40}C_{15}$
જો $\sum_{ k =1}^{10} K ^{2}\left(10_{ C _{ K }}\right)^{2}=22000 L$ હોય તો $L$ ની કિમંત $.....$ થાય.
જો $f(y) = 1 - (y - 1) + {(y - 1)^2} - {(y - 1)^{^3}} + ... - {(y - 1)^{17}},$ હોય તો $y^2$ નો સહગુણક મેળવો.
ધારો કે $(1+x)^{10}$ ના વિસ્તરણમાં $x^{ r }$ નો દ્વિપદ્દી સહગગણક $C _{ r }$ વડે દર્શાવાય છે. જો $\alpha, \beta \in R$ માટે, $C _{1}+3 \cdot 2 C _{2}+5 \cdot 3 C _{3}+\ldots 10$ પદો સુધી = $\frac{\alpha \times 2^{11}}{2^{\beta}-1}\left(C_{0}+\frac{C_{1}}{2}+\frac{C_{2}}{3}+\ldots 10\right.$ પદો સુધી $)$, તો $\alpha+\beta$ ની કિમત ....... છે.
જો $(1 + x - 3x^2)^{2145} = a_0 + a_1x + a_2x^2 + .........$ હોય તો $a_0 - a_1 + a_2 - a_3 + ..... $ નો છેલ્લો અંક મેળવો
$\sum_{ r =0}^{6}\left({ }^{6} C _{ r }{ }^{-6} C _{6- r }\right)$ ની કિમંત મેળવો.