Two waves $Y_1=A_1 \sin \,(\omega t -\beta_1)$ and $Y_2 = A_2 \sin \,(\omega t -\beta_2)$ superimpose to form a resultant wave whose amplitude is
$\sqrt {A_1^2 + A_2^2 + 2{A_1}{A_2}\,\cos \,({\beta _1} - {\beta _2})} $
$\sqrt {A_1^2 + A_2^2 + 2{A_1}{A_2}\,\sin \,({\beta _1} - {\beta _2})} $
$A_1 + A_2$
$(A_1 + A_2)$
Two cars $A$ and $B$ are moving in the same direction with speeds $36\, km/hr$ and $54 \,km/hr$ respectively. Car $B$ is ahead of $A$. If $A$ sounds horn of frequency $1000\, Hz$ and the speed of sound in air is $340\, m/s$, the frequency of sound received by the driver of car $B$ is ..... $Hz$
The equation of a stationary wave is
$y = 0.8\,\cos \,\,\left( {\frac{{\pi x}}{{20}}} \right)\,\sin \,200\,\pi t$
where $x$ is in $cm$ and $t$ is in $sec$ . The separtion between consecutive nodes will be .... $cm$
Equation of a plane progressive wave is given by $y = 0.6\, \sin 2\pi \left( {t - \frac{x}{2}} \right)$.On reflection from a denser medium its amplitude becomes $2/3$ of the amplitude of the incident wave. The equation of the reflected wave is :-
A source of sound is travelling with a velocity of $40\,km/hour$ towards an observer and emits sound of frequency $2000\,Hz$ . If the velocity of sound is $1220\,km/hour$ , what is the apparent frequency heard by the observer ..... $Hz$
The equation of a stationary wave is $Y = 10\,\sin \,\frac{{\pi x}}{4}\,\cos \,20\,\pi t$. The distance between two consecutive nodes in metres is