Two projectiles $A$ and $B$ are thrown with initial velocities of $40\,m / s$ and $60\,m / s$ at angles $30^{\circ}$ and $60^{\circ}$ with the horizontal respectively. The ratio of their ranges respectively is $\left( g =10\,m / s ^2\right)$
$\sqrt{3}: 2$
$2: \sqrt{3}$
$1:1$
$4:9$
Two particles are projected from the same point with the same speed at different angles $\theta _1$ and $\theta _2$ to the horizontal. They have the same range. Their times of flight are $t_1$ and $t_2$ respectively.
The projectile motion of a particle of mass $5\, g$ is shown in the figure.
The initial velocity of the particle is $5 \sqrt{2}\, ms ^{-1}$ and the air resistance is assumed to be negligible. The magnitude of the change in momentum between the points $A$ and $B$ is $x \times 10^{-2}\, kgms ^{-1} .$ The value of $x ,$ to the nearest integer, is ...... .
A player kicks a football with an initial speed of $25\, {ms}^{-1}$ at an angle of $45^{\circ}$ from the ground. What are the maximum height and the time taken by the football to reach at the highest point during motion ? (Take g $=10 \,{ms}^{-2}$ )
A projectile is fired with a speed $u$ at an angle $\theta$ with the horizontal. Its speed when its direction of motion makes an angle ‘$\alpha $’ with the horizontal is
A cricketer hits a ball with a velocity $25\,\,m/s$ at ${60^o}$ above the horizontal. How far above the ground it passes over a fielder $50 m$ from the bat ........ $m$ (assume the ball is struck very close to the ground)