Two point charges $Q$ each are placed at a distance $d$ apart. A third point charge $q$ is placed at a distance $x$ from mid-point on the perpendicular bisector. The value of $x$ at which charge $q$ will experience the maximum $Coulomb's force$ is ...............
$x=d$
$x=\frac{d}{2}$
$x=\frac{d}{\sqrt{2}}$
$x=\frac{d}{2 \sqrt{2}}$
Consider three charges $q_{1}, q_{2}, q_{3}$ each equal to $q$ at the vertices of an equilateral triangle of side $l .$ What is the force on a charge $Q$ (with the same sign as $q$ ) placed at the centroid of the triangle, as shown in Figure
The distance between charges $5 \times {10^{ - 11}}\,C$ and $ - 2.7 \times {10^{ - 11}}\,C$ is $0.2\, m$. The distance at which a third charge should be placed in order that it will not experience any force along the line joining the two charges is......$m$
Two identical conducting spheres carry identical charges. If the spheres are set at a certain distance apart, they repel each other with a force $F$. A third conducting sphere identical to the other two, but initially uncharged is touched to one sphere and then to the other before being removed. The force between the original two spheres is now
Force of attraction between two point charges $Q$ and $-Q$ separated by $d\,$ metre is ${F_e}$. When these charges are placed on two identical spheres of radius $R = 0.3\,d$ whose centres are $d\,$ metre apart, the force of attraction between them is
The electrostatic force on a small sphere of charge $0.4 \;\mu\, C$ due to another small sphere of charge $-0.8 \;\mu \,C$ in air is $0.2\; N .$
$(a)$ What is the distance between the two spheres?
$(b)$ What is the force on the second sphere due to the first?