Two pith balls carrying equal charges are suspended from a common point by strings of equal length, the equilibrium separation between them is $r.$ Now the strings are rigidly clamped at half the height. The equilibrium separation between the balls now become
$\left( {\frac{r}{{\sqrt[3]{2}}}} \right)$
$\left( {\frac{{2r}}{{\sqrt 3 }}} \right)$
$\left( {\frac{{2r}}{3}} \right)$
${\left( {\frac{1}{{\sqrt 2 }}} \right)^2}$
A simple pendulum of period $T$ has a metal bob which is negatively charged. If it is allowed to oscillate above a positively charged metal plate, its period will
A point charge $q_1$ exerts an electric force on a second point charge $q_2$. If third charge $q_3$ is brought near, the electric force of $q_1$ exerted on $q_2$
Two electrons each are fixed at a distance $'2d'$. A third charge proton placed at the midpoint is displaced slightly by a distance $x ( x << d )$ perpendicular to the line joining the two fixed charges. Proton will execute simple harmonic motion having angular frequency : $( m =$ mass of charged particle)
Two positive charges of $20$ $coulomb$ and $Q\;coulomb$ are situated at a distance of $60\,cm$. The neutral point between them is at a distance of $20\,cm$ from the $20\,coulomb$ charge. Charge $Q$ is.....$C$
A particle of mass $1 \,{mg}$ and charge $q$ is lying at the mid-point of two stationary particles kept at a distance $'2 \,{m}^{\prime}$ when each is carrying same charge $'q'.$ If the free charged particle is displaced from its equilibrium position through distance $'x'$ $(x\,< \,1\, {m})$. The particle executes $SHM.$ Its angular frequency of oscillation will be $....\,\times 10^{8}\, {rad} / {s}$ if ${q}^{2}=10\, {C}^{2}$