Two infinite plane parallel sheets separated by a distance $d$ have equal and opposite uniform charge densities $\sigma $. Electric field at a point between the sheets is
Zero
$\frac{\sigma }{{{\varepsilon _0}}}$
$\frac{\sigma }{{2{\varepsilon _0}}}$
Depends upon the location of the point
An electric field is uniform, and in the positive $x$ direction for positive $x,$ and uniform with the same magnitude but in the negative $x$ direction for negative $x$. It is given that $E =200 \hat{ i }\; N/C$ for $x\,>\,0$ and $E = - 200\hat i\;N/C$ for $x < 0 .$ A right ctrcular cyllnder of length $20 \;cm$ and radius $5\; cm$ has its centre at the origin and its axis along the $x$ -axis so that one face is at $x=+10\; cm$ and the other is at $x=-10\; cm$
$(a)$ What is the net outward flux through each flat face?
$(b)$ What is the flux through the side of the cylinder?
$(c)$ What is the net outward flux through the cylinder?
$(d)$ What is the net charge inside the cyllnder?
A point charge $+Q$ is positioned at the centre of the base of a square pyramid as shown. The flux through one of the four identical upper faces of the pyramid is
A charge $'q'$ is placed at one corner of a cube as shown in figure. The flux of electrostatic field $\overrightarrow{ E }$ through the shaded area is ...... .
The electric field in a region is given by $\vec E = \frac{3}{5}{E_0}\hat i + \frac{4}{5}{E_0}\hat j$ and $E_0 = 2\times10^3\, N/C$. Then, the flux of this field through a rectangular surface of area $0.2\, m^2$ parallel to the $y-z$ plane is......$\frac{{N - {m^2}}}{C}$
Linear charge density of wire is $8.85\,\mu C/m$ . Radius and height of the cylinder are $3\,m$ and $4\,m$ . Then find the flux passing through the cylinder