Two identical steel cubes (masses $50\,g$, side $1\,cm$) collide head-on face to face with a space of $10\,cm/s$ each. Find the maximum compression of each. Young’s modulus for steel $Y = 2 \times 10^{11}\,Nm^{-2}$.
Let $m=50 \mathrm{~g}=50 \times 10^{-3} \mathrm{~kg}$ $\mathrm{~L}=1 \mathrm{~cm}=0.01 \mathrm{~m}$
$v=10 \mathrm{~cm} / \mathrm{s}=0.1 \mathrm{~m} / \mathrm{s}$
$\mathrm{Y}=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$
Here, KE will be converted to $PE$
$\mathrm{F}=\frac{\mathrm{YAL}}{\mathrm{L}}$ (Hooke's Law)
$\therefore$ Also, $\mathrm{F}=k \Delta \mathrm{L} \quad(\mathrm{K}=$ spring constant $)$
$\therefore k=\mathrm{Y} \frac{\mathrm{A}}{\mathrm{L}}=\mathrm{YL} \quad\left[\because \mathrm{A}=\mathrm{L}^{2}\right]$
Initial $\mathrm{KE}=2 \times \frac{1}{2} m v^{2}=5 \times 10^{-4} \mathrm{~J}$
Final $\mathrm{PE}=2 \times \frac{1}{2} k(\Delta \mathrm{L})^{2}=k(\Delta \mathrm{L})^{2}$
$\therefore k(\Delta \mathrm{L})^{2}=5 \times 10^{-4}=\sqrt{\frac{5 \times 10^{-4}}{2 \times 10^{11} \times 0.1}}=1.58 \times 10^{-7} \mathrm{~m}$
Two bodies moving towards each other collide and move away in opposite directions. There is some rise in temperature of bodies because a part of the kinetic energy is converted into
A particle moves in a straight line with retardation proportional to its displacement. Its loss of kinetic energy for any displacement $x$ is proportional to
What is exothermic reaction and endothermic reaction ?
A graph of potential energy $V(x)$ verses $x$ is shown in figure. A particle of energy $E_0$ is executing motion in it. Draw graph of velocity and kinetic energy verses $x$ for one complete cycle $AFA$.
A body of mass $8\,kg$ is moved by a force $F = 3x\,N,$ where $x$ is the distance covered. Initial position is $x = 2\,m$ and the final position is $x = 10\,m$. The initial speed is $0.0\,m/s.$ The final speed is ........... $m/s$