Two identical solid balls, one of ivory and the other of wet-clay are dropped from the same height on the floor. Which one will rise to a greater height after striking the floor and why ?
Ivory ball is more elastic than wet-clay ball, therefore, it tends to regain its original shape quickly after colliding the floor and hence ivory ball will rise higher.
A wire is stretched by $0.01$ $m$ by a certain force $F.$ Another wire of same material whose diameter and length are double to the original wire is stretched by the same force. Then its elongation will be
In nature the failure of structural members usually result from large torque because of twisting or bending rather than due to tensile or compressive strains. This process of structural breakdown is called buckling and in cases of tall cylindrical structures like trees, the torque is caused by its own weight bending the structure. Thus, the vertical through the centre of gravity does not fall withinthe base. The elastic torque caused because of this bending about the central axis of the tree is given by $\frac{{Y\pi {r^4}}}{{4R}}$ $Y$ is the Young’s modulus, $r$ is the radius of the trunk and $R$ is the radius of curvature of the bent surface along the height of the tree containing the centre of gravity (the neutral surface). Estimate the critical height of a tree for a given radius of the trunk.
Four identical hollow cylindrical columns of mild steel support a big structure of mass $50,000 \;kg$. The inner and outer radii of each column are $30$ and $60\; cm$ respectively. Assuming the load distribution to be uniform, calculate the compressional strain of each column.
Overall changes in volume and radii of a uniform cylindrical steel wire are $0.2 \%$ and $0.002 \%$ respectively when subjected to some suitable force. Longitudinal tensile stress acting on the wire is ($Y = 2.0 × 10^{11} Nm^{-2}$)
Young’s modulus of perfectly rigid body material is