Two full turns of the circular scale of screw gauge cover a distance of $1\,mm$ on scale. The total number of divisions on circular scale is $50$. Further, it is found that screw gauge has a zero error of $+0.03\,mm$. While measuring the diameter of a thin wire a student notes the main scale reading of $3\,mm$ and the number of circular scale division in line, with the main scale is $35$. The diameter of the wire is .......... $mm$

  • A

    $3.32$

  • B

    $3.73$

  • C

    $3.67$

  • D

    $3.38$

Similar Questions

The main scale of a vernier calliper has $n$ divisions/ $\mathrm{cm}$. $n$ divisions of the vernler scale coincide with $(\mathrm{n}-1)$ divisions of maln scale. The least count of the vernler calliper is,

  • [NEET 2019]

If in a Vernier callipers $10 \,VSD$ coincides with $8 \,MSD$, then the least count of Vernier calliper is ............ $m$  [given $1 \,MSD =1 \,mm ]$

The vernier scale of a travelling microscope has $50$ divisions which coincide with $49$ main scale divisions. If each main scale division is $0.5\, mm$, calculate the minimum inaccuracy in the measurement of distance.

The least count of the main scale of a vernier callipers is $1\, mm$. Its vernier scale is divided into $10$ divisions and coincide with $9$ divisions of the main scale. When jaws are touching each other, the $7$ th division of vernier scale coincides with a division of main scale and the zero of vernier scale is lying right side of the zero of main scale. When this vernier is used to measure length of a cylinder the zero of the vernier scale between $3.1\, cm$ and $3.2\, cm$ and $4^{th}$ $VSD$ coincides with a main scale division.The length of the cylinder is $.....cm$
($VSD$ is vernier scale division)

  • [JEE MAIN 2020]

Answer the following :

$(a)$ You are given a thread and a metre scale. How will you estimate the diameter of the thread ?

$(b)$ A screw gauge has a pitch of $1.0\; mm$ and $200$ divisions on the circular scale. Do you think it is possible to increase the accuracy of the screw gauge arbitrarily by increasing the number of divisions on the circular scale ?

$(c)$ The mean diameter of a thin brass rod is to be measured by vernier callipers. Why is a set of $100$ measurements of the diameter expected to yield a more reliable estimate than a set of $5$ measurements only ?