Two free point charges $+q$ and $+4q$ are a distance $R$ apart. $A$ third charge is so placed that the entire system is in equilibrium. Then the third charge is :-
zero
$\frac{2}{3}\,q$
$\frac{4}{9}\,q$
$-\frac{4}{9}\,q$
Four point charges $q_{A}=2\; \mu C, q_{B}=-5\; \mu C,$ $q_{C}=2\; \mu C,$ and $q_{D}=-5\;\mu C$ are located at the corners of a square $ABCD$ of side $10\; cm .$ What is the force on a charge of $1 \;\mu C$ placed at the centre of the square?
A thin metallic wire having cross sectional area of $10^{-4} \mathrm{~m}^2$ is used to make a ring of radius $30 \mathrm{~cm}$. A positive charge of $2 \pi \mathrm{C}$ is uniformly distributed over the ring, while another positive charge of $30$ $\mathrm{pC}$ is kept at the centre of the ring. The tension in the ring is__________ $\mathrm{N}$; provided that the ring does not get deformed (neglect the influence of gravity). (given, $\frac{1}{4 \pi \epsilon_0}=9 \times 10^9 \mathrm{SI}$ units)
A charge $+q$ is situated at a distance $d$ away from both the sides of a grounded conducting $L$ shaped sheet as shown in the figure.The force acting on the charge $+q$ is
Two small spherical balls each carrying a charge $Q = 10\,\mu C$ ($10$ micro-coulomb) are suspended by two insulating threads of equal lengths $1\,m$ each, from a point fixed in the ceiling. It is found that in equilibrium threads are separated by an angle ${60^o}$ between them, as shown in the figure. What is the tension in the threads......$N$ (Given: $\frac{1}{{(4\pi {\varepsilon _0})}} = 9 \times {10^9}\,Nm/{C^2}$)
Two point charges $3 \times 10^{-6} \,C$ and $8 \times 10^{-6} \, C$ repel each other by a force of $6 \times 10^{-3} \, N$. If each of them is given an additional charge $-6 \times 10^{-6} \, C$, the force between them will be