Two exactly similar wires of steel and copper are stretched by equal forces. If the total elongation is $2 \,cm$, then how much is the elongation in steel and copper wire respectively? Given, $Y_{\text {steel }}=20 \times 10^{11} \,dyne / cm ^2$, $Y_{\text {copper }}=12 \times 10^{11} \,dyne / cm ^2$
$1.25 \,cm ; 0.75 \,cm$
$0.75 \,cm ; 1.25 \,cm$
$1,15 \,cm , 0.85 \,cm$
$0.85 \,cm ; 1.15 \,cm$
A wire of length $L$ and radius $r$ is clamped rigidly at one end. When the other end of the wire is pulled by a force $f$, its length increases by $l$. Another wire of same material of length $2 L$ and radius $2 r$ is pulled by a force $2 f$. Then the increase in its length will be
Steel and copper wires of same length are stretched by the same weight one after the other. Young's modulus of steel and copper are $2 \times {10^{11}}\,N/{m^2}$ and $1.2 \times {10^{11}}\,N/{m^2}$. The ratio of increase in length
A load of $2 \,kg$ produces an extension of $1 \,mm$ in a wire of $3 \,m$ in length and $1 \,mm$ in diameter. The Young's modulus of wire will be .......... $Nm ^{-2}$
Two exactly similar wires of steel and copper are stretched by equal forces. If the difference in their elongations is $0.5$ cm, the elongation $(l)$ of each wire is ${Y_s}({\rm{steel}}) = 2.0 \times {10^{11}}\,N/{m^2}$${Y_c}({\rm{copper}}) = 1.2 \times {10^{11}}\,N/{m^2}$
Increase in length of a wire is $1\, mm$ when suspended by a weight. If the same weight is suspended on a wire of double its length and double its radius, the increase in length will be ........ $mm$