Two equal positive point charges are kept at points $A$ and $B$ . The electric potential, while moving from $A$ to $B$ along straight line
continuously increases
remains constant
decreases then increases
increases then decreases
If the potential at the centre of a uniformly charged hollow sphere of radius $R$ is $V$ then electric field at a distance $r$ from the centre of the sphere is $(r > R)$
A solid conducting sphere having a charge $Q$ is surrounded by an uncharged concentric conducting hollow spherical shell. Let the potential difference between the surface of the solid sphere and that of the outer surface of the hollow shell be $V$. If the shell is now given a charge of $-3Q$, the new potential difference between the same two surfaces is......$V$
Ten electrons are equally spaced and fixed around a circle of radius $R$. Relative to $V = 0$ at infinity, the electrostatic potential $V$ and the electric field $E$ at the centre $C$ are
Uniform electric field of magnitude $100$ $V/m$ in space is directed along the line $y = 3 + x$. Find the potential difference between point $A$ $ (3, 1)$ $\&$ $B$ $(1, 3)$.......$V$
$A$ and $C$ are concentric conducting spherical shells of radius $a$ and $c$ respectively. $A$ is surrounded by a concentric dielectric of inner radius $a$, outer radius $b$ and dielectric constant $k$. If sphere $A$ is given a charge $Q$, the potential at the outer surface of the dielectric is.