Two equal $-ve$ charges $-q$ are fixed at the points $(0, a)$ and $(0, -a)$ on the $y-$ axis. A positive charge $Q$ is released from rest at the point $(2a, 0)$ on the $x-$ axis. The charge will

  • A

    Execute $SHM$ about the origin

  • B

    Move to the origin and remain at rest

  • C

    Move to infinity

  • D

    Execute oscillatory but not $SHM$

Similar Questions

 An insulator plate is passed between the plates of a capacitor. The the displacement current

Five balls numbered $1$ to $5$ are suspended using separate threads. Pairs $(1,2), (2,4)$ and $(4,1)$ show electrostatic attraction while pairs $(2,3)$ and $(4,5)$ show repulsion. Therefore ball $1$ must be

A thin spherical conducting shell of radius $R$ has charge $q$. Another charge $Q$ is placed at the centre of the shell. The electrostatic potential at a point $P$ at a distance $R/2$ from the centre of the shell is

A parallel plate capacitor of capacitance $C$ is connected to a battery and is charged to a potential difference $V$. Another capacitor of capacitance $2C$ is connected to another battery and is charged to potential difference $2V$ . The charging batteries are now disconnected and the capacitors are connected in parallel to each other in such a way that the positive terminal of one is connected to the negative terminal of the other. The final energy of the configuration is

Two opposite and equal charges $4 \times {10^{ - 8}}\, coulomb$ when placed $2 \times {10^{ - 2}}\,cm$ away, form a dipole. If this dipole is placed in an external electric field $4 \times 10^8\, newton / coulomb$ , the value of maximum torque and the work done in rotating it through $180^o$ will be