Two concentric spherical shells of radius $R_1$ and $R_2$ have $q_1$ and $q_2$ charge respectively as shown in figure. How much charge will flow through key $k$ when it is closed
${q_2}\,\left( {\frac{{{R_1} + {R_2}}}{{{R_2}}}} \right)$
$\frac{{{q_1}{R_2} + {q_2}{R_1}}}{{{R_2}}}$
${q_2}\,\left( {\frac{{{R_2} - {R_1}}}{{{R_2}}}} \right)$
$\frac{{{q_1}{R_2} - {R_1}{q_2}}}{{{R_2}}}$
Figure shows a solid conducting sphere of radius $1 m$, enclosed by a metallic shell of radius $3 \,m$ such that their centres coincide. If outer shell is given a charge of $6 \,\mu C$ and inner sphere is earthed, find magnitude charge on the surface of inner shell is ............. $\mu C$
Two metal spheres, one of radius $R$ and the other of radius $2R$, both have same surface charge density $\sigma $. They are brought in contact and separated. What will be new surface charge densities on them ?
Three concentric metallic spherical shells of radii $R, 2R, 3R$, are given charges $Q_1, Q_2, Q_3$, respectively. It is found that the surface charge densities on the outer surfaces of the shells are equal. Then, the ratio of the charges given to the shells, $Q_1 : Q_2 : Q_3$ is
An empty thick conducting shell of inner radius $a$ and outer radius $b$ is shown in figure.If it is observed that the inner face of the shell carries a uniform charge density $-\sigma$ and the surface carries a uniform charge density $ '\sigma '$
If the outer surface of the shell is earthed, then identify the correct statement(s)
A thin metallic spherical shell contains a charge $Q$ on it. A point charge $+q$ is placed at the centre of the shell and another charge $q'$ is placed outside it as shown in fig. All the three charges are positive. The force on the central charge due to the shell is :-