Three identical rods $AB$, $CD$ and $PQ$ are joined as shown. $P$ and $Q$ are mid points of $AB$ and $CD$ respectively. Ends $A, B, C$ and $D$ are maintained at $0^o C, 100^o C, 30^o C$ and $60^o C$ respectively. The direction of heat flow in $PQ$ is
from $P$ to $Q$
from $Q$ to $P$
heat does not flow in $PQ$
data not sufficient
Two rods of same length and material transfer a given amount of heat in $12$ seconds, when they are joined end to end. But when they are joined lengthwise, then they will transfer same heat in same conditions in ....... $\sec$
Figure shows three different arrangements of materials $1, 2$ and $3$ to form a wall. Thermal conductivities are $k_1 > k_2 > k_3$ . The left side of the wall is $20\,^oC$ higher than the right side. Temperature difference $\Delta T$ across the material $1$ has following relation in three cases
A metal rod of length $2\, m$ has cross-sectional areas $2A$ and $A$ as shown in the following figure. The two ends are maintained at temperatures $100\,^oC$ and $70\,^oC$. The temperature of middle point $C$ is ........ $^oC$
A deep rectangular pond of surface area $A,$ containing water (denstity $=\rho,$ specific heat capactly $=s$ ), is located In a region where the outside air temperature is at a steady value of $-26^{\circ} {C}$. The thickness of the frozen ice layer In this pond, at a certaln Instant Is $x$.
Taking the thermal conductivity of Ice as ${K}$, and its specific latent heat of fusion as $L$, the rate of Increase of the thickness of ice layer, at this instant would be given by
The temperature of hot and cold end of a $20cm$ long rod in thermal steady state are at ${100^o}C$ and ${20^o}C$ respectively. Temperature at the centre of the rod is...... $^oC$