Three equal charges are placed at the corners of an equilateral triangle. Which of the graphs below correctly depicts the equally-spaced equipotential surfaces in the plane of the triangle? (All graphs have the same scale.)
Write the characteristics of equipotential surface.
Two point charges of magnitude $+q$ and $-q$ are placed at $\left( { - \frac{d}{2},0,0} \right)$ and $\left( {\frac{d}{2},0,0} \right)$, respectively. Find the equation of the equipotential surface where the potential is zero.
Given below are two statements: one is labelled a
Assertion $(A)$ and the other is labelled as Reason$(R)$
$Assertion$ $(A)$ : Work done by electric field on moving a positive charge on an equipotential surface is always zero.
$Reason$ $(R)$ : Electric lines of forces are always perpendicular to equipotential surfaces.
In the light of the above statements, choose the most appropriate answer from the options given below
Prove that a closed equipotential surface with no charge within itself must enclose an equipotential volume.
A uniformly charged solid sphere of radius $R$ has potential $V_0$ (measured with respect to $\infty$) on its surface. For this sphere the equipotential surfaces with potentials $\frac{{3{V_0}}}{2},\;\frac{{5{V_0}}}{4},\;\frac{{3{V_0}}}{4}$ and $\frac{{{V_0}}}{4}$ have rasius $R_1,R_2,R_3$ and $R_4$ respectively. Then