तीन सिक्के एक बार उछाले जाते हैं। वर्णन कीजिए।
दो घटनाएँ जो परस्पर अपवर्जी हैं किंतु निःशेष नहीं हैं।
When three coins are tossed, the sample space is given by
$S =\{ HHH , \,HHT , \,HTH ,\, HTT , \,THH , \,THT , \,TTH , \,TTT \}$
Two events which are mutually exclusive but not exhaustive can be
$A:$ getting exactly one head
$B:$ getting exactly one tail
i.e.. $A=\{H T T, \,T H T, \,T T H\}$
$B =\{ HHT ,\, HTH , \,THH \}$
This is because $A \cap B=\phi,$ but $A \cup B \neq S$
तीन सिक्के एक बार उछाले जाते हैं। निम्नलिखित की प्रायिकता ज्ञात कीजिए
अधिकतम $2$ चित्त प्रकट होना
स्वतन्त्र घटनाओं ${A_1},\,{A_2},\,..........,{A_n},$ के लिए $P({A_i}) = \frac{1}{{i + 1}},$ $i = 1,\,\,2,\,......,\,\,n$ हो, तो किसी भी घटना के घटित न होने की प्रायिकता है
यदि दो पांसे एक साथ उछाले जाते हैं, तब पहले पांसे पर $1$ आने की प्रायिकता है
यदि $A$ व $B$ दो स्वतंत्र घटनायें हैं तथा $P\,(A \cap B') = \frac{3}{{25}}$ व $P\,(A' \cap B) = \frac{8}{{25}}$, तो $P(A)$ का मान है
तीन सिक्के एक बार उछाले जाते हैं। वर्णन कीजिए।
तीन घटनाएँ जो परस्पर अपवर्जी और निःशेष हैं।