Three bars having length $l, 2l$ and $3l$ and area of cross-section $A, 2 A$ and $3 A$ are joined rigidly end to end. Compound rod is subjected to a stretching force $F$. The increase in length of rod is (Young's modulus of material is $Y$ and bars are massless)

  • A

    $\frac{13 F l}{2 A Y}$

  • B

    $\frac{F l}{A Y}$

  • C

    $\frac{3 F l}{A Y}$

  • D

    $\frac{9 F l}{A Y}$

Similar Questions

A uniform wire (Young's modulus $2 \times 10^{11}\, Nm^{-2}$ ) is subjected to longitudinal tensile stress of $5 \times 10^7\,Nm^{-2}$ . If the over all volume change in the wire is $0.02\%,$ the fractional decrease in the radius of the wire is close to

  • [JEE MAIN 2013]

A steel rod of length $1\,m$ and cross sectional area $10^{-4}\,m ^2$ is heated from $0^{\circ}\,C$ to $200^{\circ}\,C$ without being allowed to extend or bend. The compressive tension produced in the rod is $........\times 10^4\,N$ (Given Young's modulus of steel $=2 \times 10^{11}\,Nm ^{-2}$, coefficient of linear expansion $=10^{-5}\, K ^{-1}$.

  • [JEE MAIN 2023]

A steel rod has a radius $10 \,mm$ and a length of $1.0 \,m$. A force stretches it along its length and produces a strain of $0.32 \%$. Young's modulus of the steel is $2.0 \times 10^{11} \,Nm ^{-2}$. What is the magnitude of the force stretching the rod is ........ $kN$

A rod of length $1.05\; m$ having negligible mass is supported at its ends by two wires of steel (wire $A$) and aluminium (wire $B$) of equal lengths as shown in Figure. The cross-sectional areas of wires $A$ and $B$ are $1.0\; mm ^{2}$ and $2.0\; mm ^{2}$. respectively. At what point along the rod should a mass $m$ be suspended in order to produce $(a)$ equal stresses and $(b)$ equal strains in both steel and alumintum wires.

A uniform plank of Young’s modulus $Y $ is moved over a smooth horizontal surface by a constant horizontal force $F.$ The area of cross section of the plank is $A.$ The compressive strain on the plank in the direction of the force is